The Minimum-Norm Least-Squares Solution of a Linear System and Symmetric Rank-One Updates

نویسندگان

  • Xuzhou Chen
  • Jun Ji
  • XUZHOU CHEN
  • JUN JI
چکیده

In this paper, we study the Moore-Penrose inverse of a symmetric rank-one perturbed matrix from which a finite method is proposed for the minimum-norm least-squares solution to the system of linear equations Ax = b. This method is guaranteed to produce the required result.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela the Minimum-norm Least-squares Solution of a Linear System and Symmetric Rank-one Updates

In this paper, we study the Moore-Penrose inverse of a symmetric rank-one perturbed matrix from which a finite method is proposed for the minimum-norm least-squares solution to the system of linear equations Ax = b. This method is guaranteed to produce the required result.

متن کامل

Global least squares solution of matrix equation $sum_{j=1}^s A_jX_jB_j = E$

In this paper, an iterative method is proposed for solving matrix equation $sum_{j=1}^s A_jX_jB_j = E$. This method is based on the global least squares (GL-LSQR) method for solving the linear system of equations with the multiple right hand sides. For applying the GL-LSQR algorithm to solve the above matrix equation, a new linear operator, its adjoint and a new inner product are dened. It is p...

متن کامل

Exact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach

We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...

متن کامل

MINRES-QLP: a Krylov subspace method for indefinite or singular symmetric systems

CG, SYMMLQ, and MINRES are Krylóv subspace methods for solving symmetric systems of linear equations. When these methods are applied to an incompatible system (that is, a singular symmetric least-squares problem), CG could break down and SYMMLQ’s solution could explode, while MINRES would give a least-squares solution but not necessarily the minimum-length (pseudoinverse) solution. This underst...

متن کامل

A New Much Faster and Simpler Algorithm for Lapack Dgels

We present new algorithms for computing the linear least squares solution to overde-termined linear systems and the minimum norm solution to underdetermined linear systems. For both problems, we consider the standard formulation min kAX ? BkF and the transposed formulation min kA T X ? BkF , i.e, four diierent problems in all. The functionality of our implementation corresponds to that of the L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017